Improving the predictive ability of the signal-averaged electrocardiogram with a linear logistic model incorporating clinical variables.
نویسندگان
چکیده
To improve the predictive accuracy of the signal-averaged electrocardiogram, we created a linear logistic model for predicting ventricular tachycardia during electrophysiologic testing. This signal-averaged electrocardiographic model was created from data obtained from 214 patients undergoing electrophysiologic testing (70 had ventricular tachycardia during electrophysiologic testing) by using stepwise logistic regression to rank eight clinical and nine signal-averaged electrocardiographic variables. The best predictors were ejection fraction, history of infarction, ventricular ectopic pairs or nonsustained ventricular tachycardia on Holter monitoring, QRS duration after 25-Hz filtering, and root mean square voltage of the terminal 40 msec of the QRS complex after 40- and 80-Hz filtering. Cross validation (a statistical technique that can be used to accurately evaluate how a predictive model will perform on a prospective patient population) was used to validate the model. After cross validation, the model's sensitivity was 91% and specificity was 59% for predicting ventricular tachycardia during electrophysiologic testing. This model compared favorably with established 25-Hz late-potential criteria (QRS duration of more than 110 msec and root mean square voltage of less than 25 microV of the terminal 40 msec of the QRS complex; sensitivity, 64%; specificity, 85%) and with established 40-Hz late-potential criteria (QRS duration of more than 114 msec or root mean square voltage of less than 20 microV of the terminal 40 msec of the QRS complex or duration of the low-amplitude signal less than 40 microV at the terminal QRS complex that is greater than 38 msec; sensitivity, 84%; specificity, 54%).(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Improving the stability of the power system based on static synchronous series compensation equipped with robust model predictive control
Low-frequency oscillations (LFO) imperil the stability of the power system and reduce the Capacity of transmission lines. In the power systems, FACTS devices and Power System stabilizers are used to improve the stability. Static synchronous series compensators is one of the most important FACTS devices. This paper investigates the damping of LFO with static synchronous series compensator (SSSC)...
متن کاملPredictive validity of and annual written exams and written tests for assistant's promotion of Mashhad University of Medical Science
ABSTRACT BACKGROUND AND OBJECTIVE: The residency or specialization course in post-graduate medical education in Iran includes 3-5 years depends on different specialization. To be promoted to a higher year, assistants must earn the minimum score specified for their interdepartmental exams and annual national examinations. The aim of this study was to evaluate the predictive validity of these exa...
متن کاملPredictive factors for infertility of women: an univariate and multivariate logistic regression analysis
Background and aims: Infertility is a major problem during reproductive age. Physical and psychological effects of infertility in women are problematic. The aim of this study was to determine the potential predictive factors of infertility, among women referring both public and private health centers in Ilam province, western Iran, in 2013. Methods: In this cross-sectional study, 1013 women re...
متن کاملCredit Risk Predictive Ability of G-ZPP Model Versus V-ZPP Model
Credit risk management is becoming more and more important in recent years. When a company deals with a financial problem, it may not be able to fulfill its financial obligations, which can cause direct and indirect financial losses to shareholders, creditors, investors and other people in the community. Advanced credit risk models that are based on market value include improving credit quality...
متن کاملمقایسه قدرت پیش بینی شبکه عصبی مصنوعی با رگرسیون لجستیک چندگانه در تفکیک بیماران دیابتی رتینوپاتی از غیر رتینوپاتی
Background: Diabetes mellitus is a high prevalent disease among the population, and if not controlled, it causes complications and irreparable damage to the eye and cause blindness. This study goal is to investigate the predictive power of multiple logistic regression model and the Artificial Neural Network Multi-layer Perceptron (MLP) in determining patients with and without diabetic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 81 3 شماره
صفحات -
تاریخ انتشار 1990